A Viro theorem without convexity hypothesis for trigonal curves
نویسندگان
چکیده
منابع مشابه
A Viro Theorem without Convexity Hypothesis for Trigonal Curves
A cumbersome hypothesis for Viro patchworking of real algebraic curves is the convexity of the given subdivision. It is an open question in general to know whether the convexity is necessary. In the case of trigonal curves we interpret Viro method in terms of dessins d’enfants. Gluing the dessins d’enfants in a coherent way we prove that no convexity hypothesis is required to patchwork such cur...
متن کاملDihedral Coverings of Trigonal Curves
We classify and study trigonal curves in Hirzebruch surfaces admitting dihedral Galois coverings. As a consequence, we obtain certain restrictions on the fundamental group of a plane curve D with a singular point of multiplicity (deg D−3).
متن کاملA Convexity Theorem For Isoparametric Submanifolds
The main objective of this paper is to discuss a convexity theorem for a certain class of Riemannian manifolds, so-called isoparametric submanifolds, and how this relates to other convexity theorems. In the introduction we will present the convexity theorems. In Section 2 we will describe the geometry of isoparametric submanifolds and in Section 3 we will relate this to the geometries of the ot...
متن کاملA convexity theorem for real projective structures
Given a finite collection P of convex n-polytopes in RP (n ≥ 2), we consider a real projective manifold M which is obtained by gluing together the polytopes in P along their facets in such a way that the union of any two adjacent polytopes sharing a common facet is convex. We prove that the real projective structure on M is 1. convex if P contains no triangular polytope, and 2. properly convex ...
متن کاملAbelian Functions for Trigonal Curves of Degree Four and Determinantal Formulae in Purely Trigonal Case
In the theory of elliptic functions, there are two kinds of determinantal formulae of Frobenius-Stickelberger [6] and of Kiepert [7], both of which connect the function σ(u) with ℘(u) and its (higher) derivatives through an determinantal expression. These formulae were naturally generalized to hyperelliptic functions by the papers [11], [12], and [13]. Avoiding generality, we restrict the story...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2006
ISSN: 1073-7928,1687-0247
DOI: 10.1155/imrn/2006/87604